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Abstract

This thesis introduces an algorithm to make automated bets in scoring rule-based
prediction markets. The algorithm only takes users’ probability estimates as input and
places bets that maximize their expected rate of growth. The algorithm takes into
account the price adjustment of the scoring rule and modifies the bet size accordingly,
which corresponds to a proper application of the Kelly criterion. The thesis introduces
the above concepts in detail and provides a derivation of the algorithm specifically for
the Logarithmic Market Scoring Rule. The algorithm enables users to interact with
prediction markets without in-depth knowledge of the underlying mechanisms, without
risk of ruin and (Kelly-) ideal outcomes when their subjective probability estimates match
the “true” probabilities of the events in question.
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CHAPTER 1
Introduction

1.1 Motivation
Prediction markets, or information-aggregation markets, have shown remarkable accuracy
in predicting the outcome of future events, like the winners of elections or the outcome of
sport events [1, 30, 2]. In theory, this is possible because they allow multiple participants
to pool their information into a collective forecast. They do so by buying and selling
shares in the outcome, which are redeemable for a certain amount of money in case
the event occurs, but become worthless otherwise. Through this mechanism they are
incentivized to bet according to their true believes, and bettors with better information
are incentivized to correct the mistakes of others.

While many people can express a subjective probability estimate, fewer know how to trade
in a market. Therefore, a more accessible user interface for prediction markets would only
require of users to enter their subjective probability estimate, while an algorithm figures
out an appropriate amount of shares to buy or sell. This would be especially useful in
play-money prediction markets [20], where users have to worry less about giving control
to an algorithm. However, the question remains what an “appropriate” amount to bet is.

1.2 Problem definition
The Kelly criterion [14] is a classic formula for devising optimal bet sizes when being
faced with a series of bets. It has been successfully applied in a variety of betting
scenarios [21, 22, 26]. Since trades in prediction markets are essentially bets, using the
Kelly criterion is a natural choice. In fact, formal models of prediction market activity
either explicitly [3] or implicitly [31] assume Kelly bettors.

However, in markets based on market scoring rules – essentially automated market makers
that are popular for prediction market implementations – prices change in response to
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1. Introduction

each trade [8, 9, 6]. This leads users of the classic Kelly formula to bet more than is
Kelly-ideal. This can lead them to make outright unfavorable bets in certain scenarios.
A proper application of the Kelly criterion to market scoring rules would anticipate the
price movement of the trade itself and lower the bet size accordingly.

Using this non-naive application of the formula, the Kelly-optimal amount to bet can be
determined based on users’ subjective probability estimate, their current wealth and the
current price of the asset.

1.3 Goal
The goal of the thesis is to provide an algorithm to determine the Kelly-optimal number
of shares to buy in a market scoring rule-based prediction market. Specifically, a solution
for the Logarithmic Market Scoring Rule (LMSR) is provided, which is the most popular
scoring rule in practice. Readers should be able to derive solutions for other scoring rules
using the process outlined in this thesis.

The thesis is structured as follows. Chapter 2 will introduce markets, and prediction
markets in particular. Chapter 3 will introduce market scoring rules, a solution to the
shortcomings of conventional markets with respect to information-aggregation. Chapter 4
will introduce the Kelly formula. In chapter 5 the Kelly formula will be applied to market
scoring rules. The last chapter will discuss various limiting factors of the solution.
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CHAPTER 2
Prediction Markets

It has been known since Hayek [11] that markets, as a side e�ect of trade, also aggregate
information. When a certain good has found additional applications, or has become more
scarce for other reasons, it will be reflected in its price.

While financial markets are generally designed to facilitate the exchange of goods, a
market can also be designed for the purpose of uncovering information about an asset.
These are known as prediction markets or information-aggregation markets. In these
virtual markets, instead of physical goods, contracts are being traded that have a certain
payo� if a particular event occurs. All contracts related to a specific event have a common
maturity date, at which point it is determined which outcome occurred (typically by the
host of the prediction market) and the payouts are being distributed accordingly [30, 28].
This thesis will deal with assets that are worth either $1 when a certain state is reached
or $0 otherwise, which are referred to as Arrow-Debreu securities [5].

This chapter will provide some historical context, explain traditional market structures
and discuss the theory behind prediction markets.

2.1 History
“Betting markets” have been used to bet on the outcome of presidential elections from as
early as 1868 until around 1940 [18]. They resurfaced in 1988 with the introduction of
the University of Iowa’s Iowa Electronic Markets (IEM) [7], which sparked interest in the
subject again.

2.1.1 Early betting markets
Despite never being considered fully legal, the volume traded on betting markets in the
19th and 20th century was relatively high compared to prediction markets today. At
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2. Prediction Markets

times they exceeded the volume traded on stock and bond markets. While the main
activity occurred in New York’s Wall Street area, there were markets in other major U.S.
cities as well [18].

Historical prediction markets had astonishing accuracy. Only in the 1916 election, the
candidate initially favored by the market did not win, although the odds were split even
by the time the polls closed [18].

It is assumed that these markets disappeared with the introduction of scientific polling.
Newspapers stopped reporting on prediction markets, which were considered unethical
by the general public throughout the time. In response, regulators in the 1940s finally
started to limit the activity of organized betting on elections [18].

2.1.2 IEM
With a special permission for educational purposes, the IEM opened in 1988 with a
maximum of $500 traded per account. The goal of the IEM was to study the behavior
of markets and traders. The market was designed as a futures market. The value of
the traded assets depended on the outcome of future events. In the case of the IEM, it
o�ered contracts for each presidential candidate of the same year, paying a fixed amount
if that candidate won, but nothing otherwise. Although the trade volumes were orders of
magnitude smaller than earlier betting markets, the prices showed remarkable accuracy
again [7].

2.2 Market mechanisms
This chapter will summarize how common auction mechanisms work and introduce
critical terminology related to markets and trading.

2.2.1 Call markets
Call markets, also known as k-double auctions, were popular before the widespread
availability of telecommunication technology. While outdated, they form the basis for
later market mechanisms.

Call markets allow trading only at predefined times, referred to as market clearing times,
and they only accept limit orders. Limit orders are orders that inform the market operator
that one is willing to buy (sell) a certain security at no more (no less) than a specified
price. They can be represented as triples (Ï

i

, q

i

, b

i

), where Ï

i

is the security being traded,
q

i

is the desired quantity, where negative quantities denote sell orders, and b

i

denotes
the limit price [28]. In case of a buy order, the limit price is also called the bid price and
in case of a sell order it is also called ask price. Buy and sell orders are also referred to
as bids and asks, respectively.

Table 2.1 depicts 6 example orders. Assume the market clears after receiving these orders.
It contains n = 3 buy orders and m = 3 sell orders. When sorting the orders in decreasing
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2.2. Market mechanisms

Nr. Buy Sell
1 (A, 1, $0.50)
2 (A, ≠1, $0.50)
3 (A, 2, $0.40)
4 (A, ≠2, $0.40)
5 (A, 3, $0.30)
6 (A, ≠3, $0.30)

Table 2.1: Example buy and sell order sequence for asset “A”.

Nr. Rank Order
1 p

1

(A, 1, $0.50)
2 p

2

(A, ≠1, $0.50)
3 p

3

(A, 2, $0.40)
4 p

4

(A, ≠2, $0.40)
5 p

5

(A, 3, $0.30)
6 p

6

(A, ≠3, $0.30)

Table 2.2: The orders from Table 2.1 sorted by limit price.

order of limit price, as in table 2.2, the m-th highest price is referred to as p

m

. In a call
market, the clearing price is set to p

m+1

+ k(p
m

≠ p

m+1

) where k = 0.5 [28].

In the example, this results in a market clearing price of $0.40. As a result, order 6
will be matched against order 1 and 3. Orders 2 and 5 remain untouched as they are
above/below the market clearing price. Order 4 would meet the clearing price, but there
are no buyers are left.

2.2.2 Continuous double auction

The Continuous Double Auction (CDA) is the most common market structure today.
Notable examples of CDA markets include the NYSE and NASDAQ.

The CDA mechanism is similar to a call market, except that the market clears every time
a new order is placed. The exchange keeps an order book containing all unmatched buy
and sell orders. As soon as a buy (sell) order is received that has a higher (lower) limit
price than the lowest (highest) sell (buy) order in the book, they are matched against
each other. Otherwise the order is added to the order book, waiting for future orders to
be matched against.

There is a price di�erence between the lowest ask and the highest bid price at all times
(otherwise the CDA mechanism would facilitate a trade), which is known as the bid-ask
spread. Ideally, the bid-ask spread is small. A market is said to be liquid when there are
high quantities of both bids and asks in the order book, which typically coincides with a
low bid-ask spread.
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2. Prediction Markets

In this market setup, the price is usually referred to as the midpoint between the lowest
bid and the highest ask price. It can also refer to the last price at which a transaction
took place. In either case, the price can only change when orders enter or leave the order
book. In other words, the price changes as a side e�ect of trading.

Looking at the orders from Table 2.1, it can be seen that using the CDA mechanism,
order 1 is matched against order 2, as are orders 3 and 4, as well as orders 5 and 6. If the
orders arrive in this order (assuming an empty order book) the market clears completely.
It should be noted that when the orders arrive in a di�erent order, other outcomes can
be reached.

2.3 Theory

2.3.1 Marginal trader hypothesis

Intuitively, prediction markets work because traders would stand to profit from buying
(selling) at prices that do not reflect their subjective estimates, thereby adjusting the
price upwards (downwards), moving it towards a hypothetical consensus estimate. By
mapping the prices of these securities to the [0, 1] interval they can be interpreted as
probability estimates [31].

The marginal trader hypothesis is often cited as the driving force. It proposes that a small
number of well-calibrated traders (“wolves”) are responsible for e�cient price formation.
They are being attracted to the market by “noise traders” (“sheep”) who trade for any
other reason than profit maximization, be it entertainment, insurance, or manipulation
attempts [10]. However, this hypothesis has been called into question [16].

In any case, the designation as information aggregation markets should be emphasized,
which makes it clear that only information that is available can be aggregated by such a
structure.

2.3.2 Notation

Formally, we assume an outcome space O that contains n (finite) mutually exclusive
and exhaustive outcomes {o

1

, . . . , o

n

} = O. The simplest case is a binary outcome
{o€, o‹} = O. �(O) denotes the set of probability distributions over O. We assume each
trader has a private belief p œ �(O). If a trader observes market prices that correspond
to a p

m

œ �(O) that is di�erent from her private belief p, she can maximize her expected
utility by buying or selling assets until p

m

Õ = p, where p

m

Õ denotes the market prices
after the trader is finished trading.

2.3.3 CDA prediction markets

Building on this model, a CDA prediction market can be created.
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2.3. Theory

Unlike commodity or stock exchanges, prediction markets feature virtual goods. The
CDA mechanism leaves open the question how these goods enter the market in the first
place. Unlike goods in conventional markets, they can’t be produced in the real-world.
Luckily, they can be created in a risk-free manner for both the market operator and
traders:

Assume the payo� of a security is $1. Since it is required that the outcome space is
exhaustive and outcomes are mutually exclusive, the market operator can sell a bundle
of securities, containing one security for each possible outcome, at $1 without risk. Since
only one outcome can eventually be true, the market operator needs to pay out $1 for
only one security of the bundle.

On the other hand, the buyer of the bundle doesn’t face any risk either, since at least
one of the securities she owns will be worth $1 at maturity. However, in order to gain
a profit, she needs to sell some of the securities in the market at or above prices that
reflect her subjective probability estimate. This way new contracts enter the market.

This concludes the chapter on prediction markets. In this chapter the concept of prediction
markets was introduced. Additionally, critical terminology regarding markets in general,
and prediction markets in particular, has been presented. The following chapter will
show how the concept of prediction markets has been advanced in recent times.
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CHAPTER 3
Market Scoring Rules

The last chapter introduced a CDA-based prediction market. However, the computer
science research on prediction markets has shifted its focus away from traditional market
designs, because they are geared towards facilitating the exchange of goods, whereas for
prediction markets, designs that facilitate the sharing of information are preferable.

Specifically, the thin-market problem had to be addressed. When hosting prediction
markets on arbitrary subjects, one can not expect the kind of popular interest that sport
events and elections attract, resulting in little or no trading activity. Such markets are
referred to as “thin”. To turn a thin market into a “think” market, active traders are
needed. Unfortunately, they are mostly interested in active markets, i.e. markets with
other traders in it, resulting in a circularity. Market scoring rules are a solution to this
problem.

Notational conventions In this chapter, vectors are represented as p̨. Individual
elements of vectors are referenced by their index via subscripts, e.g. p

i

. Subscripts are
also used to di�erentiate versions of the same variable, e.g. p

i,t

is the value at index i at
time t. Expressions like

q
j

p

j

are a shorthand for the sum over all indices of the vector,
while

q
j ”=i

p

j

is a shorthand for the sum over all indices except i.

3.1 Automated market makers
The thin-market problem can be overcome using market makers. These are (possibly
algorithmic) market participants who are able to quote prices at all times and accept
trades at these prices. They act as central actors in the market, intermediating all others.

For example, the Hollywood Stock Exchange (HSX), a popular play-money prediction
market for movie box o�ce results, uses a proprietary automated market maker. In the

9



3. Market Scoring Rules

academic research, Hanson’s market scoring rules have become popular, which are a form
of automated market maker [9].

Using an automated market maker, it would be possible to run a prediction market with
just a single participant. In this scenario, the participant would bet against the market
maker, so that the resulting price would reflect his subjective probability estimate. While
this seems counterintuitive, this is not unlike a principal asking an agent for a advice
(in form of a probability distribution over a set of outcomes). In order to ensure honest
reporting, the principal would like to pay the agent based on the observed outcome.
One may notice that this concept shares similarities with the contracts being traded in
prediction markets.

In fact, this concept has been know since 1950 [4], and has been referred to as scoring
rules since 1971 [19]. The key contribution of Hanson [8, 9] was to modify scoring rules,
so that an arbitrary number of experts can report their probability estimates, while
keeping the costs to the principal fixed. These are known as market scoring rules and, as
the name suggests, have a close relation to prediction markets.

In this chapter, scoring rules will be discussed in detail. Then, Hanson’s adaptation of
scoring rules to market scoring rules will be presented. An interpretation for market
scoring rules as prediction markets will follow. Finally, the LMSR will be introduced.

3.2 Scoring rules

Independent of the development of prediction markets, scoring rules have long been used
to receive honest probability reports from individual experts. A notable example are
“Brier scores” used in weather forecasting [4].

3.2.1 Intuition

Scoring rules are useful when a party (the patron or agent) is interested in paying an
expert for a report, in the form of a probability distribution, based on its accuracy. A
scoring rule can be used to predetermine what the reward will be for each possible pair
of expert report and observed outcome.

E.g. an expert may believe that a binary event has a 80% chance of occurring. He accepts
being compensated according to a scoring rule. Based on the scoring rule, in case the
event occurs, he will receive a generous compensations, while he will receive a penalty if
the event does not occur. Given a “fair” scoring rule and that the “true” probability is
indeed 80%, he can expect to receive a favorable reward over a larger number of such
reports. The following section will establish this formally.

10



3.2. Scoring rules

3.2.2 Formal model

We assume a finite, mutually exclusive and exhaustive set of outcomes {o

1

, . . . , o

n

} = O,
not unlike those found in weather forecasting (sunny, cloudy, rain, . . . ). Further, we
assume an expert has a private belief p̨ œ �(O) regarding those outcomes, where �(O)
is the set of probability distributions over O.

Experts are thought of as risk-neutral, expected utility maximizing, i.e. they will not
discriminate between a guaranteed reward of $0.80 and a 80% chance of winning $1.00, or
even a guaranteed reward of $1.000 and a 0.1% chance of winning $1.000.000. It should
be noted that these assumptions are only made for the purpose of establishing incentive
compatibility.

An expert may report a probability distribution r̨ œ �(O) and be rewarded a cash payment
c

i

if event o

i

is observed. The reward is determined by a scoring rule s = {s

1

, . . . , s

n

}, a
sequence of scoring functions, one for each possible outcome, so that c

i

= s

i

(r̨) [19]. The
reward may be negative (e.g. when an expert assigns a low probability to an event that
subsequently occurs).

3.2.3 Constraints

In order in incentivize the expert to report her true belief p̨, the scoring rule has to satisfy
an incentive-compatibility constraint

p̨ = arg max
r̨

ÿ

i

p

i

s

i

(r̨) (3.1)

Given this constraint, it is optimal to set r̨ = p̨.

To incentivize the expert to participate at all, the scoring rule has to satisfy a rational
participation constraint, i.e. the expert receives a positive reward in expectation.

ÿ

i

p

i

s

i

(p̨) > 0 (3.2)

A scoring rule that is real-valued for all r̨ (except possibly ≠Œ for r

i

= 0) is said to be
“regular”. A scoring rule that satisfies equation 3.1 is referred to as proper. If there exists
a unique report r̨ that maximizes the experts expected reward, the scoring rule is said
to be strictly proper [29]. Going forward, this thesis will assume strictly proper scoring
rules.

3.2.4 Common scoring rules

Examples of proper scoring rules include the quadratic scoring rule (3.3) [4], the spherical
scoring rule (3.4) and the logarithmic scoring rule (3.5) [9].
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3. Market Scoring Rules

s

i

(r̨) = a

i

+ 2b r

i

≠ b

ÿ

j

r

2

j

(3.3)

s

i

(r̨) = a

i

+ b r

iÒq
j

r

2

j

(3.4)

s

i

(r̨) = a

i

+ b log r

i

(3.5)

Here, a

1

, . . . , a

n

and b > 0 represent parameters which can be used to a�ne transform
the curve. They are usually set to a

i

= 0 ’i and b = 1 for simplicity.

Notably, the Brier score mentioned earlier is an a�ne transformed version of the quadratic
scoring rule.
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Figure 3.1: Comparison of the quadratic, spherical and logarithmic scoring rule.

Figure 3.1 provides a comparison of the quadratic, spherical and logarithmic scoring rule
for a binary outcome O = {o€, o‹}. Figure 3.1a shows the “raw” score of the scoring
rules, i.e. the scaling parameters are set to a€ = a‹ = 0 and b = 1, for reporting di�erent
probability estimates for the outcome that subsequently turns out to be true.

As expected, each scoring rule assigns its highest score when reporting a probability
estimate of 1 for the true outcome. It should be noted that the logarithmic scoring rule
is unbounded from below, assigning a score of ≠Œ for reporting a probability estimate
of 0 for the event that turns out to be true.

For better comparison, figure 3.1b shows a normalized score for each scoring rule. This is
achieved by choosing di�erent values for a€, a‹ and b, so that reporting 1 for the correct
outcome awards a score of 1, and reporting equal probabilities awards a score of 0, which

12



3.3. Sequential sharing

a b

Quadratic ≠1 2
Spherical ≠2.41421 3.41421

Logarithmic 1 1.4427

Table 3.1: Parameters for normalized scoring rules for binary decisions.

is thought of as the baseline prediction. Intuitively, an expert reporting the baseline does
not add new information and should therefore not receive a reward.

The values for a�ne transforming the raw scoring rules into the normalized scoring rules
are obtained by solving the following system of equations

s€ [( 0.5

0.5

)] = 0
s€ [( 1

0

)] = 1

for a = a€ = a‹ and b. Table 3.1 depicts the results.

It should be noted that a�ne transformation leaves the incentive compatibility constraint
(3.1) intact for all values of a

1

, . . . , a

n

and all b > 0.

3.3 Sequential sharing
A natural limitation of scoring rules is that a probability distribution can only be elicited
from a single expert. One could ask multiple experts and use a linear combination of
their reports as a collective forecast. This has the obvious disadvantage that the costs of
doing so increase linearly with the number of experts. Also, it is unclear how much weight
to assign to each report. One could assign equal weights, or heavier ones to reports from
experts that performed well in the past. However, as it turns out, there is a better way
to approach this limitation.

3.3.1 Intuition
In Chapter 2 the concept of prediction markets was introduced, which are able to elicit a
collective probability distribution and letting the participants “chose their own weights”
by making bets in the market. However, in order for this to work, a su�cient amount of
liquidity needs to exists in the market which may not be the case in many instances.

It was Hanson’s insight that one could “share” a scoring rule sequentially between an
arbitrary number of experts without increasing the costs or predefining how much weight
to put on any one expert’s report. In this version of the scoring rule, every participant
can report a probability distribution at any time, as long as he is willing the pay the
last expert according to the rule. Naturally, reporting the same distribution as the last
expert gives no reward, similar to how reporting the baseline distribution in a normalized
scoring rule (as in Figure 3.1b) awards a score of 0. However, if an expert has knowledge

13



3. Market Scoring Rules

of a more accurate probability distribution, he can net the di�erence between his report
and the previous report. Meanwhile, the patron only needs to pay the last expert, which
puts an upper bound on the cost.

3.3.2 Example
Assume the normalized logarithmic scoring rule, scaled by 10 (a

i

= 10 ’i, b = 14.427).
The current prediction for a binary event is 60%, which has been reported by the previous
expert. The current expert believes the true probability is 80%. She agrees to pay the
previous expert according to the rule, which is $2.63 in case the event occurs, and ≠$3.22
in case it doesn’t (c.f. equation 3.5, figure 3.1b). Here, a negative amount means that
she receives a payment from the previous expert.
Assuming the event occurs, the expert receives a reward of $6.78 for her 80% prediction
according to the rule. Since she still has to pay the previous expert, she nets a reward of
$4.15 = $6.78 ≠ $2.63.
Assuming the event does not occur, the experts receives $3.22 from the previous expert,
but according to the rule, has to pay $13.22 to the next expert for her implicit 20%
prediction. This leaves her with ≠$10 = ≠$13.22 + $3.22.
Note that it is still rational for the expert to participate, since, according to her subjective
belief, losing $10 would only happen in 20% of cases, while winning $4.15 would happen
in 80% of cases. Therefore, her expected reward is 0.8 ◊ $4.15 + 0.2 ◊ ≠$10 = $1.32,
which is positive.

3.3.3 Costs
In a sequentially shared scoring rule, the reward c

i

of an expert does not only depend on
his report r̨

t

, but also the report of the previous expert r̨

t≠1

. The reward is the di�erence
in score between the two reports

c

i

= �s

i

(r̨
t

, r̨

t≠1

) = s

i

(r̨
t

) ≠ s

i

(r̨
t≠1

) (3.6)

Since an expert can’t change the previous expert’s report, he will still maximize his score
by setting r̨

t

= p̨ [8].
The total cost of a market scoring rule to a patron is the sum of the costs of all reports.
Assuming a total of T reports, using (3.6), the total costs is

Tÿ

t=1

c

i,t

=
Tÿ

t=1

s

i

(r̨
t

) ≠ s

i

(r̨
t≠1

) (3.7)

= s

i

(r̨
1

) ≠ s

i

(r̨
0

) + s

i

(r̨
2

) ≠ s

i

(r̨
1

) + · · · + s

i

(r̨
T

) ≠ s

i

(r̨
T ≠1

) (3.8)

= s

i

(r̨
T

) ≠ s

i

(r̨
0

) (3.9)
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3.3. Sequential sharing

The intermediary terms cancel each other out, so that the cost only depends on the first
and the last report. Since the patron controls the first report, e�ectively the cost only
depends on the last report.

The maximum payout, or worst-case loss to the patron, occurs when the last expert
reports 1 for the true outcome. Assuming the patron has no prior knowledge, therefore
sets the first report to the uniform report, and that o

i

is the true outcome, the worst-case
loss is bounded by

s

i

(˛1
i

) ≠ s

i

(r̨
U

)

where r̨

U

is the uniform report, i.e. r

i

= 1

n

’i (with n = |O|), and ˛1
i

is a vector with the
i-th element set to 1 and all other elements set to 0.

3.3.4 Worst-case bounds
For the quadratic scoring rule (3.3), the worst case loss is bounded by

s

i

(˛1
i

) ≠ s

i

(r̨
U

) = a

i

+ 2b 1 ≠ b 12 ≠
A

a

i

+ 2b

1
n

≠ b n

3 1
n

4
2

B

= b

3
1 ≠ 1

n

4
,

for the spherical scoring rule (3.4), the worst case loss is bounded by

s

i

(˛1
i

) ≠ s

i

(r̨
U

) = a

i

+ b 1Ô
12

≠

Q

ccaa

i

+
b

1

nÚ
n

1
1

n

2
2

R

ddb

= b

3
1 ≠ 1Ô

n

4
,

and for the logarithmic scoring rule (3.5), the worst case loss is bounded by

s

i

(˛1
i

) ≠ s

i

(r̨
U

) = a

i

+ b log 1 ≠
3

a

i

+ b log 1
n

4

= b log n.

Notably, all market scoring rules above have bounds that depend only on the number of
possible outcomes n and the parameter b.

3.3.5 Infinitesimal reports
Equation 3.7 shows that the movement from r̨

0

to r̨

T

can be broken up into smaller
movements from r̨

t

to r̨

t+1

, which are the individual reports of the experts. Similarly,
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3. Market Scoring Rules

experts can split their own reports into two separate reports, r̨

t

to r̨

t+

1
2

and r̨

t+

1
2

to r̨

t+1

,
at no additional cost. In fact, an expert can split her report into an infinite amount
of reports, each moving the estimate an infinitesimal amount towards r̨

t+1

[9]. This
property simply follows from the fact that s

i

is a function.

3.4 Scoring rules as markets
Section 3.3 showed that scoring rules can be shared among an arbitrary number of experts
without additional cost to the patron, as long as each expert agrees to pay the previous
expert according to the rule. However, so far it is unclear how scoring rules relate to
prediction markets, where it is assumed that certain assets are being traded.

This chapter will show that sequentially shared scoring rules can be interpreted as cost
function-based automated market makers, which enable interactions similar to prediction
markets.

3.4.1 Cost function-based automated market makers
A cost function-based automated market maker is defined by a cost function C. In
addition, it maintains a quantity vector q̨ of the number of contracts sold so far, where
q

i

is the number sold for outcome o

i

. The cost function maps the quantity vector to the
total amount of money collected from all traders $c

total

= C(q̨) [8].

After trading has stopped and o

i

is the true outcome, the market maker needs to pay out
$1 to each trader that holds the corresponding asset, which is a total of $1 ◊ q

i

. However,
it gets to keep c

total

, the amount that was collected from the traders in exchange for all
assets, including the ones for o

i

.

In order to achieve bounded worst-case loss, the market maker needs to buy and sell all
contracts at a price so that the di�erence between q

i

and c

total

stays within that bound
for all possible outcomes.

This is best illustrated via the price function, which is the first-order derivative of the
cost function [6].

p(q̨) = ˆC

ˆq̨

(3.10)

The price function maps the quantity vector to the risk-neutral price of each asset, which
is the price at which the algorithm is indi�erent to either buying or selling an infinitesimal
amount of the asset (these market makers have zero bid-ask spread). It can be interpreted
as the current price of the asset and is also called the instantaneous price [9, 6].

After buying or selling each infinitesimal amount, the market maker quotes a new risk-
neural price, which is determined by the price function. It should be noted that each
larger trade can be broken up into smaller trades (cf. section 3.3.5). Buying or selling a
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3.4. Scoring rules as markets

larger, non-infinitesimal amount of any asset, then, is the integral of the price function
over the distance from the current quantity vector to the quantity vector after the trade
[6].

If a trader wants to buy/sell a bundle of assets �q̨ = q̨

Õ ≠ q̨, where q̨ is the current
quantity vector and q̨

Õ is the quantity vector after the trade, the price of the bundle is
determined by

⁄
q̨

Õ

q̨

p(x̨) dx̨ = C(q̨ Õ) ≠ C(q̨) (3.11)

which follows directly from the definition of the price function.

For example, buying two assets of the “true” outcome and selling one for the “false”
outcome �q̨ =

!
2

≠1

"
in a binary prediction market, where 20 “true” and 18 “false” assets

have already been sold (q̨ = ( 20

18

)), costs $ C[( 22

17

)] ≠ C[( 20

18

)].

The exact amount, how much the prices change in response to trades, and what the
worst-case loss of the market maker is, depends on the choice of the cost function C.
This will be discussed in the following section.

3.4.2 Equivalence

It is possible to construct a cost function-based automated market maker from any market
scoring rule [6]. The equivalence can be established as follows:

• In a market scoring rule, an expert who has private probability estimate p̨

Õ changes
the estimate from p̨ to p̨

Õ and expects a reward of $�s

i

(p̨ Õ
, p̨) = s

i

(p̨ Õ) ≠ s

i

(p̨) when
outcome o

i

occurs.

• When trading with a cost function-based automated market maker, a trader who has
a private probability estimate p̨

Õ buys/sells a bundle of assets �q̨ from/to the market
maker, so that prices change to p̨

Õ. She expects a profit of $(qÕ
i

≠q

i

)≠(C(q̨ Õ)≠C(q̨))
for outcome o

i

, which is the payo� of $1 per share times the number of shares, minus
the costs of buying those shares according to the market maker’s cost function.

Following this rationale, the equivalent cost function for a given market scoring rule can
be obtained by equating the payo�s under both scenarios for all i and finding a C, so
that

s

i

(p̨ Õ) ≠ s

i

(p̨) = (qÕ
i

≠ q

i

) ≠ (C(q̨ Õ) ≠ C(q̨)) (3.12)

under consideration of p̨ = ˆC

ˆq̨

and
q

i

p

i

= 1.
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3. Market Scoring Rules

Chen and Pennock [6] show that the following system of equations establishes an un-
ambiguous equivalence between market scoring rules and cost function-based market
makers:

Y
______]

______[

s

i

(p̨) = q

i

≠ C ’i

ÿ

i

p

i

= 1

p

i

= ˆC

ˆq

i

(3.13)

3.5 The Logarithmic Market Scoring Rule
The LMSR is the de facto standard market scoring rule in practice, as it is easy to
understand and implement. Much of this thesis will focus on the LMSR for this reason.

3.5.1 Cost and price function
The logarithmic scoring rule is defined as s

i

= b log(r
i

) (setting a

i

= 0). According to [6]
the corresponding cost function is

C(q̨) = b log

Q

a
ÿ

j

e

q

j

b

R

b (3.14)

and the corresponding price function, which is obtained by taking the partial derivative,
is

p

i

(q̨) = e

q

i

b

q
j

e

q

j

b

(3.15)

The equivalence between the cost function and the market scoring rule can be shown via
(3.13):

s

i

(p̨) = q

i

≠ C(q̨)

b log(p
i

) = q

i

≠ b log

Q

a
ÿ

j

e

q

j

b

R

b

b log

Q

a e

q

i

b

q
j

e

q

j

b

R

b = q

i

≠ b log

Q

a
ÿ

j

e

q

j

b

R

b
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3.5. The Logarithmic Market Scoring Rule

b log e

q

i

b ≠ b log

Q

a
ÿ

j

e

q

j

b

R

b = q

i

≠ b log

Q

a
ÿ

j

e

q

j

b

R

b

b

q

i

b

log e = q

i

q

i

= q

i

This shows that, given equal initial conditions, an expert reporting a p̨

Õ to a LMSR
receives the exact same reward as a trader buying shares �q̨, so to that prices correspond
to p̨

Õ, when trading with an automated market maker with cost function (3.14).

3.5.2 Liquidity Parameter
The b parameter in equation (3.14) and (3.15) plays an important role when trading. It
is also called the liquidity parameter, as it defines how much prices move in response to
trades. A larger b is generally preferred by traders, as it allows them to buy/sell more
shares at a similar price level. However, from the patron’s perspective, a larger b means
a higher worst-case loss, as has been established in section 3.3.4. For the LMSR, the
worst-case loss is defined by b log n.

Figure 3.2 shows the price of an asset in a binary prediction market q̨ = ( x

0

) in response
to the number of shares being bought with b = 10, b = 25, and b = 100. The worst-case
losses are $6.93, $17.33, and $69.31, respectively.
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Figure 3.2: Price of an asset in response to the number of outstanding shares.

One may object that predefining the liquidity parameter is impossible, as it requires to
know the popularity of a given market in advance. Othman and Pennock [17] provide a
solution that lets market scoring rules dynamically adjust their liquidity. For the sake of
simplicity, this thesis will continue with the assumption that b is known and constant.
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3. Market Scoring Rules

This concludes the chapter on market scoring rules. The following chapter will introduce
the Kelly criterion.
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CHAPTER 4
The Kelly Criterion

The Kelly criterion is a classic formula to devise the fraction of one’s wealth to commit
to each bet in a series of independent bets in order to maximize one’s expected rate of
growth. In other words, given certain conditions, no other fraction would lead to a better
outcome over an infinite number of bets [15].

In practice, fractional Kelly betting, i.e. betting a fraction of full Kelly, is popular since
it gives leeway to estimation errors and reduces variance [15].

This chapter is structured as follows: Section 1 will introduce the classic Kelly formula,
and section 2 will show how the formula is derived and how it achieves its goal of
maximizing expected rate of growth.

Notational Convention In this chapter, upper-case letters refer exclusively to random
variables. E is the expectation operator and Pr is a probability measure. E.g.: E[X] is
the expected value of random variable X ≥ f(x), with Pr[X Æ x] = F (x).

4.1 Formula
This section will introduce basic betting terminology and the original Kelly formula for
two-outcome bets.

4.1.1 Betting odds and implied probability

The Kelly criterion is usually explained in terms of fractional odds, which are expressed
as “b to 1”. Such a bet means that a bettor receives a payout of $b for every dollar staked.

For example, a “2 to 1” bet will pay $2 for every dollar staked. In case of a ten dollar bet,
the change in wealth for the bettor would be +$20 in case of a win and ≠$10 otherwise.
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4. The Kelly Criterion

When a bookie is o�ering “b to 1” bets, he is making an implicit prediction about the
event. This is referred to as implied probability. The implied probability of the event in
the example above is 1

1+2

= 0.33. In general, the implied probability p

i

of a “b to 1” bet
is given by

p

i

= 1
1 + b

(4.1)

If the implied probability is indeed the true probability of the event, the expected gain
of both the bettor and the bookie is 0. Any deviation of the implied probability from
the true probability favors either the bettor or the bookie. It is such deviations that the
Kelly criterion is concerned with.

4.1.2 Classic formula
The classic Kelly formula is defined as follows: Given a series of “b to 1” bets, the fraction
f

ú of wealth w to bet each time is

f

ú = bp ≠ (1 ≠ p)
b

(4.2)

where p is the “true” probability of the event.

It assumes that the bets are favorable to the bettor. In other words, the bettor has better
knowledge of the true probability p than is implied by b. It is said that the bettor has an
“edge”. In lieu of such an advantage, i.e. p = p

i

, Kelly advises not to bet (one can see
that f

ú = 0 in this case).

It should be noted that favorable bets alone are no guarantee for long-term gain. Trivially,
if the bettor sets f = 1, i.e. he bets his entire wealth every time, he faces near-certain
ruin after a small number of bets. Conversely, if he sets f = 0, the possibility of losing is
avoided, but he has also failed to profit from his advantage. The Kelly fraction f

ú is a
reasonable, and arguably optimal, compromise between the two.

4.2 Derivation
The following derivation of the Kelly criterion is based on [13], which is in turn a modified
version of [23] and [24]. It is extended with insights from [27].

4.2.1 Rate of growth
Assume a bettor with initial wealth w

0

. After each bet, the bettor’s wealth is multiplied
by a random variable X. Thus, his wealth W

n

after n bets can be modeled as

W

n

= w

0

X

1

X

2

· · · X

n

(4.3)
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4.2. Derivation

Using basic operations and the law of large numbers, it can be said that

W

n

= w

0

X

1

· · · X

n

= e

log(w0 X1···X
n

)

= e

log(w0)+log(X1)+···+log(X

n

)

= w

0

e

log(X1)+···+log(X

n

)

¥ w

0

e

E[log(X)] n (4.4)

The last step is valid by the law of large numbers, which (loosely) states that a sum of n

independent samples of a random variable Y is approximately equal to n · E[Y ].

Equation 4.4 can be contrasted with the exponential growth formula, which is

x(t) = x

0

e

gt (4.5)

where g is the exponential growth factor. This comparison shows that in the case of
repeated gambles the growth factor is equal to E[log(X)].

Solving (4.4) for E[log(X)], the growth factor over n bets, which is denoted as G

n

, can
be defined as

G

n

:= E [log(X)]

= log
3

W

n

w

0

4 1
n

(4.6)

= 1
n

log(W
n

) ≠ 1
n

log(w
0

) (4.7)

It should be noted that G

n

is a random variable because it depends on W

n

, which is, in
turn, a random variable.

As mentioned in the introduction, Kelly suggests to maximize the expectation of this
variable, i.e. to maximize E[G

n

] [14]. It was claimed earlier that maximizing the expected
rate of growth is equivalent to maximizing the expected logarithm of wealth. This can
be shown to be true as follows:

Building on (4.7) and by the linearity of expectations,
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E[G
n

] = E
5 1

n

log(W
n

) ≠ 1
n

log(w
0

)
6

= 1
n

E[log(W
n

)] ≠ 1
n

log(w
0

)
(4.8)

Since w

0

and n are fixed, E[G
n

] is at its maximum when E[log(W
n

)] is at its maximum.

4.2.2 Choosing a fraction to bet

This section will show how a bettor can maximize his expected rate of growth by choosing
a fraction f of his wealth to bet.

Generally, a bet pays b units per unit wagered for a successful bet, and costs a units per
unit wagered when unsuccessful (typically a = 1, i.e. the amount wagered is lost). The
stochastic multiplier X, as seen in 4.3, can be defined based on this description as

X(Ê) =

Y
]

[

1 + bf Ê = win

1 ≠ af Ê = lose
(4.9)

where 0 Æ f Æ 1 is a fraction and Ê œ {win, lose}. Further, Pr({win}) = p is the
probability of winning and Pr({lose}) = 1 ≠ p is the probability of losing.

Now assume a bettor with wealth w

0

accepts n such bets, S

n

of which succeed and F

n

of
which fail, so that S

n

+ F

n

= n. Using the definition of X and (4.3), his wealth W

n

after
n bets is

W

n

= w

0

(1 + bf)S

n(1 ≠ af)F

n (4.10)

Inserting this result in (4.6), the bettor’s exponential growth rate G

n

can be expressed
as a function of f .

G

n

(f) = log
C

w

0

(1 + bf)S

n(1 ≠ af)F

n

w

0

D 1
n

= S

n

n

log (1 + bf) + F

n

n

log (1 ≠ af) (4.11)

As discussed earlier, Kelly suggests to maximize E[G
n

(f)]. Since E[S
n

] = np and
E[L

n

] = n(1 ≠ p), a function g(f) can be defined as
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4.2. Derivation

g(f) := E[G
n

(f)]

= E
5

S

n

n

log (1 + bf) + F

n

n

log (1 ≠ af)
6

= p log (1 + bf) + (1 ≠ p) log (1 ≠ af) (4.12)

Since f is the only parameter under the bettor’s influence, she will want to choose f so
that g(f) is maximal,

f

ú = arg max
f

g(f) (4.13)

This point can be found by solving g

Õ(fú) = 0, where g

Õ is the derivative of g with respect
to f . It is

g

Õ(f) = bp

1 + bf

+ a(1 ≠ p)
1 ≠ af

(4.14)

and consequently f

ú is given by

bp

1 + bf

ú + a(1 ≠ p)
1 ≠ af

ú = 0

=∆ f

ú = bp ≠ a(1 ≠ p)
ab

(4.15)

With a = 1, this is equal to (4.2), the classic Kelly formula as stated earlier.

4.2.3 Visualization
Figure 4.1 shows an example curve of g(f) with values of a = 1, b = 1 (implied probability
p

i

= 0.5) and true probability p = 0.7. The highest expected rate of growth is achieved
when betting 40% per bet. Despite the advantage, betting more than ¥ 72% of one’s
wealth results in a negative growth rate.

Figures 4.2a to 4.2f show example histories over 25 bets for a bettor betting according
to Kelly in the example above (resulting in a fraction of 0.4 per bet). As can be seen,
the end results are generally favorable, but are subject to variability and depend a lot
on the outcomes of earlier bets. As figure 4.2e shows, having an advantage and betting
according to Kelly is still no guarantee for success, as it can only diminish the role of
luck, not prevent it.
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Figure 4.1: Expected rate of growth in relation to fraction of wealth being bet, for
iterated even-money bets when the true probability of winning is 70%.
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Figure 4.2: Example histories of 25 even-money bets when the true probability of winning
is 70%, risking a fixed fraction of 0.4 (Kelly) per bet.
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CHAPTER 5
Application of Kelly to Market

Scoring Rules

This chapter will apply the Kelly criterion to trading in prediction markets based on cost
function-based automated market makers. As discussed in section 3.4.1, these automated
market makers change their prices in response to trading, so a naive application of
the Kelly criterion will necessarily result in suboptimal results. This may have little
consequence when the amounts traded are small in relation to the liquidity parameter,
but can lead to substantially higher amounts being bet otherwise.

The following sections will provide a naive solution, a “capped” solution, and the exact
solution to the problem. Then, section 5.5 will run simulations and discuss the results.

5.1 Naive application
A naive application of the Kelly criterion to market scoring rules will not consider the
price adjustment of the scoring rule. Technically, this approach isn’t an application of
the Kelly criterion, since it fails to maximize expected rate of growth, but it is a natural
starting point.

5.1.1 Basics
The classic Kelly formula (4.2) as presented earlier assumes bets of the form “b to 1”. As
has been discussed in chapter 2, prediction markets do not o�er bets of this form. Instead,
an asset that might pay $1 is bought at a certain market price p

m

. The relationship
between the two is established through

b = 1 ≠ p

m

p

m

(5.1)
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5. Application of Kelly to Market Scoring Rules

as in [3].

The original Kelly formula can thus be restated as

f

ú = bp ≠ (1 ≠ p)
b

= p ≠ p

m

1 ≠ p

m

(5.2)

In the context of the Kelly criterion, p denotes the “true” probability of a successful
gamble. In the context of prediction markets, it denotes a trader’s subjective belief.

5.1.2 Inverse bets
Following the interpretation of Kelly as a “criterion”, it states that one should not take a
gamble when f

ú
< 0. Conversely, one should not buy an asset in a prediction market,

when its price p

m

is higher than one’s subjective probability estimate p. Looking at
equation 5.2, it can been seen that f

ú is negative when p

m

> p.

However, in a prediction market one can always take the opposite side of a bet by (short-)
selling the asset, or buying a fraction 1

n≠1

of each other asset. In the case of a binary
prediction market this means buying the opposite asset. In any case, since all p

i

sum to
1, the costs of doing so are always p

m

= (1 ≠ p

m

).

In other words, there is always an inverse bet with odds “b to 1” being o�ered by the
market. Analogous to (5.1), the relationship between b and p

m

is

b = 1 ≠ p

m

p

m

= p

m

1 ≠ p

m

(5.3)

which leads to an inverse Kelly fraction f

ú of

f

ú = ≠bp ≠ (1 ≠ p)
b

= p ≠ p

m

p

m

(5.4)

where p = 1 ≠ p is the expert’s subjective belief that the event in question will not occur.
This fraction is always negative (assuming p

m

> p) to denote that the fraction should be
used to (short-) sell the asset.

Combining (5.2) and (5.4), it can thus be said that the ideal fraction f

ú
c

to bet in a
prediction market is

f

ú
c

=

Y
___]

___[

p ≠ p

m

1 ≠ p

m

p

m

< p

p ≠ p

m

p

m

otherwise
(5.5)

where a negative value means that the fraction should be used to bet against the event.
It should be noted that f

ú
c

= 0 when p

m

= p.
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5.2. Capped application

5.1.3 Number of shares
Assume a trader with wealth w has a subjective belief p

s,i

about one particular outcome
o

i

œ O. She might be interested in the exact number �q

i

of shares to buy according to
Kelly, when being o�ered to buy at a market price of p

m,i

. The number is determined
by the total money to spend (the Kelly fraction times wealth) over the price per share.
According to (5.5),

�q

i

= f

ú
c

w

p

m,i

=

Y
___]

___[

w

p

s,i

≠ p

m,i

p

m,i

≠ p

m,i

2

p

m,i

< p

s,i

w

p

s,i

≠ p

m,i

p

m,i

2

otherwise
(5.6)

Again, a negative quantity denotes a sell orders.
Going forward, this will be referred to as the “naive” application of the Kelly criterion to
prediction markets. The reasons are discussed in the next section.

5.1.4 Price adjustment
So far, it was assumed that an arbitrary amount of shares can be purchased at the fixed
price of p

m,i

. However, this is not the case. In a market scoring rule, only a infinitesimal
amount can be purchased at p

m,i

, then the market maker adjusts the price. Section
3.5.2 discussed this property for the LMSR and figure 3.2 showed the price response at
di�erent levels of the liquidity parameter b.
The problem is as follows: Kelly suggests to bet a certain fraction of wealth at a certain
price, but the trade itself moves the price to a less favorable level. Naturally, Kelly
suggest a smaller fraction to bet when being o�ered a less favorable bet. The market
maker keeps adjusting and so does Kelly, until a point is reached where it is no longer
rational to bet, either because the price moved beyond the trader’s subjective probability
or the Kelly limit is reached. In other words, due to the nature of the automated market
maker, the correct Kelly fraction will always be lower than then one suggested by (5.6),
except for infinitesimal amounts.
The following section will describe a crude solution to this problem.

5.2 Capped application
A straightforward solution to the problem of adjusting prices is to prevent the algorithm
from buying shares at a price above the user’s subjective probability estimate.
Since the solution is more procedural than analytical in nature, it is expressed in
pseudocode. Algorithm 5.1 summarizes the approach.
Basically, the algorithm starts with the result of the naive application of the Kelly
criterion. However, it includes a “sanity check” (line 3) to determine whether any portion
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5. Application of Kelly to Market Scoring Rules

Algorithm 5.1: Capped application of the Kelly criterion.
Input: A LMSR with quantity vector q̨ and liquidity parameter b, a trader with

wealth w and subjective belief p regarding outcome o

i

Output: The number of shares �q

i

to buy according to the capped application
1 �q

i

Ω result form naive application of Kelly;
2 p

m

Ω projected market price after buying �q

i

shares;
3 if p

m

> p then
4 return number of shares s.t. p

m

= p

5 else
6 return �q

i

;
7 end

of the shares would be bought at an outright unfavorable price. This is the case when the
market price after the trade would be above the trader’s subjective probability estimate.
In this case, the number of shares is capped at the point where p

m

= p.

Needless to say, this is not an actual application of the Kelly criterion. However, it is
comparatively easy to implement and leads to decent results as section 5.5 will show.

Specifically for the LMSR, the number of shares to buy so that p

m

= p can be determined
by solving the price function for q

i

:

p

i

= e

q

i

/b

e

q

i

/b +
q

j ”=i

e

q

j

/b

=∆ q

i

= b log

Q

a p

i

1 ≠ p

i

ÿ

j ”=i

e

q

j

/b

R

b

5.3 Non-naive application
The approaches discussed so far, the naive application of the Kelly criterion and the
capped application, have taken recourse to the Kelly formula, but they haven’t been actual
applications of the Kelly criterion. The reason is that they both fail to maximize the
user’s expected rate of growth, or equally, the expected logarithm of wealth. Maximizing
the expected rate of growth is the central idea behind Kelly, which isn’t bound to any
particular formula.

However, only a slight adjustment to equation 5.6 is necessary to determine the correct
Kelly amount to bet in a market scoring rule-based prediction market: The market price
p

m,i

has to be substituted with the price function p

i

(·). This leads to
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5.4. Solution for the LSMR

�q

i

=

Y
______]

______[

w

p

s,i

≠ p

i

(q̨ + �q

i

˛1
i

)
p

i

(q̨ + �q

i

˛1
i

) ≠ p

i

(q̨ + �q

i

˛1
i

)2

p

m,i

< p

s,i

w

p

s,i

≠ p

i

(q̨ + �q

i

˛1
i

)
p

i

(q̨ + �q

i

˛1
i

)2

otherwise

(5.7)

where ˛1
i

is a vector with value 1 at index i and 0 for all other indices, and q̨ is the
quantity vector of the market maker.

In order to determine the amount of shares to buy, this equation must be solved for
�q

i

. Unfortunately, unlike in case of equation 5.6, �q

i

can’t be computed directly, as it
appears multiple times in the equation. However, an approximation can be found via
numerical methods.

5.4 Solution for the LSMR
This section will derive a solution of (5.7) for the LMSR.

5.4.1 Complete equation
The LMSR’s price function is given by equation 3.15. Together with definition (5.7) one
arrives at the slightly unwieldy

�q

i

=

Y
____________________]

____________________[

w

p

s,i

≠ e

q

i

+�q

i

b

e

q

i

+�q

i

b

+

q
j ”=i

e

q

j

b

e

q

i

+�q

i

b

e

q

i

+�q

i

b

+

q
j ”=i

e

q

j

b

≠
Q

a e

q

i

+�q

i

b

e

q

i

+�q

i

b

+

q
j ”=i

e

q

j

b

R

b
2

p

m,i

< p

s,i

w

p

s,i

≠ e

q

i

+�q

i

b

e

q

i

+�q

i

b

+

q
j ”=i

e

q

j

b

Q

a e

q

i

+�q

i

b

e

q

i

+�q

i

b

+

q
j ”=i

e

q

j

b

R

b
2

otherwise

(5.8)

It can be brought to a more manageable form using the following identities

x

:= q

i

+ �q

i

b

(5.9)

r

:=
ÿ

j ”=i

e

q

j

b (5.10)
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5. Application of Kelly to Market Scoring Rules

as well as using p as a shorthand for p

s,i

. It should not be confused with the price
function p(·), though.

bx ≠ q

i

=

Y
________]

________[

w

p ≠ e

x

e

x

+r

e

x

e

x

+r

≠
1

e

x

e

x

+r

2
2

p

m,i

< p

s,i

w

p ≠ e

x

e

x

+r1
e

x

e

x

+r

2
2

otherwise

(5.11)

5.4.2 Approximation via Newton
A classic method for solving equations that do not have a closed form expression is
Newton’s method, where the solution is approximated by iterating the following expression
over n = 0, 1, 2, . . . until the desired precision is reached

x

n+1

= x

n

≠ f(x
n

)
f

Õ(x
n

) (5.12)

f

Õ denotes the derivative of f with respect to x.

Assuming p

m,i

< p

s,i

, the following statements are valid regarding (5.11).

bx ≠ q

i

= w

p ≠ e

x

e

x

+r

e

x

e

x

+r

≠
1

e

x

e

x

+r

2
2

=∆ bx ≠ q

i

w

=
p ≠ e

x

e

x

+r

e

x

e

x

+r

1
1 ≠ e

x

e

x

+r

2

=∆ 0 = bx ≠ q

i

≠ w

Ë
r

≠1

e

x(p ≠ 1) + re

≠x

p + 2p ≠ 1
È

Conversely, assuming p

m,i

Ø p

s,i

, the following statements can be made.

bx ≠ q

i

= w

p ≠ e

x

e

x

+r1
e

x

e

x

+r

2
2

=∆ bx ≠ q

i

w

=
p ≠ e

x

e

x

+r1
e

x

e

x

+r

2
2

=∆ 0 = bx ≠ q

i

≠ w

Ë
re

≠x(2p ≠ 1) + r

2

e

≠2x

p + p ≠ 1
È
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5.4. Solution for the LSMR

Using these results, a function f that has a root that is the solution to equation 5.8 can
be defined, under consideration of identities (5.9) and (5.10):

f(x) :=

Y
_]

_[

bx ≠ q

i

≠ w

Ë
r

≠1

e

x(p ≠ 1) + re

≠x

p + 2p ≠ 1
È

p

m,i

< p

bx ≠ q

i

≠ w

Ë
re

≠x(2p ≠ 1) + r

2

e

≠2x

p + p ≠ 1
È

otherwise
(5.13)

As (5.12) shows, Newton’s method requires that f is di�erentiable. This is the case with
(5.13):

f

Õ(x) =

Y
]

[

b ≠ wr

≠1

e

x(p ≠ 1) + wre

≠x

p p

m,i

< p

b + wre

≠x(2p ≠ 1) + 2wr

2

e

≠2x

p otherwise
(5.14)

x can be approximated with arbitrary precision using the following iteration sequence:

x

n+1

=

Y
____]

____[

x

n

≠ bx

n

≠ q

i

≠ w

#
r

≠1

e

x

n(p ≠ 1) + re

≠x

n

p + 2p ≠ 1
$

b ≠ w [r≠1

e

x

n(p ≠ 1) ≠ re

≠x

n

p] p

m,i

< p

x

n

≠ bx

n

≠ q

i

≠ w

#
re

≠x

n(2p ≠ 1) + r

2

e

≠2x

n

p + p ≠ 1
$

b + w [re

≠x

n(2p ≠ 1) + 2r

2

e

≠2x

n

p] otherwise
(5.15)

Finally, in order to start iterating, an initial guess x

0

is necessary. Since the goal is to
improve on the naive application of the Kelly criterion, it is a natural choice to determine
x

0

.

5.4.3 Algorithm
Algorithm 5.2 summarizes the ideas of this chapter in terms of basic operations.
Lines 10 and 11 as well as 14 and 15 deserve special attention. These are assigning
functions to f and f

Õ respectively, which is a common practice in functional programming.
This is not a necessity, but simplifies the notation of the algorithm. The functions are
being evaluated at line 18 and 19.
Lines 1-6 compute an intermediary term r =

q
j ”=i

e

q

j

/b. Line 7 computes the instanta-
neous price of asset i using r, which is equivalent to evaluating equation 3.15.
Lines 9 and 13 are the naive application of the Kelly criterion as in (5.6), which is used
as initial approximation.
Finally, lines 18-20 approximate x using Newton’s method until the desired precision Á is
reached.
This concludes the derivation of the non-naive Kelly criterion for the LMSR. The following
section will compare the naive, capped, and non-naive version of the algorithm under
various conditions.
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5. Application of Kelly to Market Scoring Rules

Algorithm 5.2: The non-naive kelly criterion for the LMSR
Input: A LMSR with quantity vector q̨ and liquidity parameter b, a trader with

wealth w and subjective belief p regarding outcome o

i

, a desired precision Á

Output: The number of shares �q

i

to buy according to Kelly
1 r Ω 0;
2 for j Ω 1 to |q̨| do
3 if j ”= i then
4 r Ω r + e

q

j

/b;
5 end
6 end
7 p

m

Ω e

q

i

/b

/(eq

i

/b + r);
8 if p

m

< p then
9 �q

i

Ω w(p ≠ p

m

)/(p
m

≠ p

m

2);
10 f Ω x ‘æ bx ≠ q

i

≠ w

#
r

≠1

e

x(p ≠ 1) + re

≠x

p + 2p ≠ 1
$
;

11 f

Õ Ω x ‘æ b ≠ w

#
r

≠1

e

x(p ≠ 1) ≠ re

≠x

p

$
;

12 else
13 �q

i

Ω w(p ≠ p

m

)/p

m

2;
14 f Ω x ‘æ bx ≠ q

i

≠ w

#
re

≠x(2p ≠ 1) + r

2

e

≠2x

p + p ≠ 1
$
;

15 f

Õ Ω x ‘æ b + w

#
re

≠x(2p ≠ 1) + 2r

2

e

≠2x

p

$
;

16 end
17 x Ω (q

i

+ �q

i

)/b;
18 while |f(x)| > Á/b do
19 x Ω x ≠ f(x)/f

Õ(x);
20 end
21 �q

i

Ω bx ≠ q

i

;
22 return �q

i

;

5.5 Comparison
This section will compare the approaches discussed in this chapter. Simulations will be
run to create example histories of the three algorithms discussed in this chapter: the naive
application of the Kelly criterion, the capped application and the non-naive application.

It should be noted that these graphs are for illustrative purposes only. The previous
sections already established that the non-naive application is the only true application of
the Kelly criterion. However, it is of interest to show how the approaches di�er under
various circumstances.

The simulations are set up as follows: For each simulation, a series of 50 events with fixed
outcomes is assumed. At each point, shares are bought according to the three approaches
from three separate logarithmic market scoring rules, each with a liquidity parameter of
b = 100. The bettors each start with an initial wealth w = 1 and it is assumed that they
know the true probability of each outcome, but not the outcome itself. Figures 5.1a to
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5.5. Comparison

5.1f show six such example histories.

As can be seen, the di�erences between the three strategies are negligible while w π b.
However, as w approaches and surpasses b, the strategies diverge.

While the naive application is prone to betting too much and facing ruin as a consequence,
the capped application generally outperforms the non-naive application. This is expected,
as higher risks naturally result in higher rewards. However, just as with the naive
application, the capped application may face ruin, as is the case in example history 5.1f.
As figure 5.1c shows, the non-naive application performs better when being faced with a
higher number of losses.

While these graphs can’t confirm properties of the non-naive strategy, they can certainly
disconfirm claims relating to either the naive or capped approach being without possibility
of ruin, because such outcomes have been observed. Hence, the non-naive application
is preferable. However, for a practical implementation of a betting system as described
in the introduction, many more problems would have to be addressed. These will be
discussed in the following chapter.
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Figure 5.1: Example histories of the naive, capped and non-naive approach.
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CHAPTER 6
Conclusion

This thesis introduced an algorithm for the non-naive application of the Kelly criterion
for market scoring rules, specifically the LMSR. It allows users to specify their subjective
probability estimate for one of the possible outcomes. The algorithm then computes
the exact number of shares to buy or sell according to the Kelly criterion, and under
consideration of the price change of the trade itself. The algorithm can be used to enable
a simplified user interface for prediction markets, one that does not ask users to make
trades themselves.

The remainder of this chapter will discuss the technical and practical limitations of the
algorithm, and if possible provide recommendations on how these could be addressed.

6.1 Technical limitations
This section will discuss various technical limitations of the algorithm, as opposed the
the more open-ended considerations discussed in the next section.

6.1.1 Multi-outcome markets
The algorithm is applicable to prediction markets that o�er one degree of freedom, i.e.
binary prediction markets. However, for markets with three or more possible outcomes,
a direct application of the method is not always possible (it is useable as long as the user
wants to bet on no more than one outcome).

Suppose a user has subjective estimates for more than one outcome, which are di�erent
from current market prices. Applying the method one asset at a time will result in
di�erent trades for di�erent permutations. This is due to each trade a�ecting the prices
of all assets. The method could be generalized, so that it allows the user to report a
complete probability distribution, which would require to solve a more complex system
of equations.
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6. Conclusion

6.1.2 Changing prices
As with all markets, prices change continuously. This can lead to situations where a
bettor bought shares at one point, and is being o�ered a more favorable bet later. A
subsequent application of the Kelly criterion results in a higher fraction assigned to the
bet than when being o�ered the more favorable bet from the beginning. This is known
as “Proebsting’s paradox” [25].

However, the resolution is straightforward (in fact there is no paradox): The goal of
Kelly is always to maximize the expectation of growth, so the bettor has to reverse the
previous bet, then calculate the new fraction based on the new condition. In the context
of market scoring rules, this is possible at no additional cost.

This solution could be interesting in combination with an implementation of limit orders
[12].

6.2 Practical considerations
Other than the strictly technical limitations discussed in the previous section, there
are number of practical considerations that are not easily modeled mathematically, and
generally don’t have an obvious answer.

6.2.1 Time value
The algorithm is missing a notion of time value. Unlike in the simulation, the outcomes of
real events aren’t immediately known, rendering shares that are closer to their maturity
date more valuable. It would be in the user’s interest to lower the bet sizes for trades
with maturity dates further in the future.

6.2.2 Order matters
Related to the time value is the order in which users input their estimates. Generally,
the algorithm will assign higher bet sizes to the earlier predictions, as the wealth of the
user shrinks with each bet.

6.2.3 Fractional Kelly
In practice it is not recommended to bet the full Kelly amount, instead it should be
considered an upper bound that must not be crossed. A more forgiving version of the
algorithm would only bet a fraction of the amount recommended by Kelly. This gives
some leeway to estimation errors, which can’t be fully avoided in practice.

6.2.4 Di�ering utility functions
As mentioned earlier, Kelly maximizes the expected log utility of money. This is only one
of an infinite amount of possible utility functions, any of which may better fit the profile
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6.2. Practical considerations

of a particular user. Kelly is considered ideal because it achieves the highest possible
wealth in the asymptote. However, since users live in the pre-asymptote this might be
of limited interest. An improved version of the algorithm might be based on a di�erent
utility function.

6.2.5 Unsophisticated users
Obviously, Kelly can only produce good outcomes if the user has an edge. Users’
probability estimates might be honest, but they needn’t be correct. The proposed
method does not guarantee gains if users are not well calibrated, it merely abstracts away
the intricacies of trading. As a result, unsophisticated traders will lose influence over
time (though Kelly prevents complete ruin) and might do so faster than if asked to make
bets manually.

It should be noted that this is not necessarily problematic and could even be desired.
After all, at least in some theoretical models, the evolutionary pressures on bad actors
are supposed the be the reason for the accuracy of the market.
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